UUPSIG

SUG 2002

MUMPS

POCKET

GUIDE

STANDARD MUMPS POCKET GUIDE

INTRODUCTION

 This booklet provides a concise summary of Standard

MUMPS, and includes explanatory text and programming

examples. This guide is therefore intended to provide an

introduction to MUMPS programming for people not previously aware of the scope of MUMPS. Furthermore, it provides a useful summary of Standard MUMPS for people currently programming in one of the several nonstandard MUMPS dialects, thereby indicating which features of the current dialect they should avoid in order to facilitate the later translation of their applications into Standard MUMPS.

 This document summarizes all the commands, functions, operators and other features of Standard MUMPS and it is believed to conform to Standard MUMPS as defined by the MUMPS Development Committee and the National Bureau of Standards. However, the reader is strongly cautioned against using this Pocket Guide as a substitute for the official MDC/ANSI description of Standard MUMPS. For details of the Standard, consult: American National Standard for information systems—programming language-MUMPS, ANSI/MDC X11.1-1984; or Conway, M.E., MUMPS Programmers’ Reference Manual, published by the MUMPS Users’ Group.

 To obtain copies or price lists of the MUG and MDC documents or to obtain additional copies of this Guide, contact MUMPS Users’ Group, 4321 Hartwick Road, Suite 510, College Park, MD 20740, 301-779-6555.

 [Throughout this handbook, certain portions of the text are enclosed in brackets. This convention is used to denote certain limitations which are imposed not by the definition of Standard MUMPS, but by a concern for the portability of MUMPS programs from one implementation to another. These Portability Requirements should be met in order to facilitate this interchange.]

 {Portions of the text enclosed in braces indicate extensions to the 1984 Standard approved by MDC.}

1

BOOKS/MANUALS
A number of books are available from the MUMPS Users’

Group for beginning and experienced programmers interested

in using the ANS MUMPS programming language.

· A Cookbook of MUMPS: Programmer’s Techniques and

Routines is an intermediate level text that presents a collec-

tion of routines with line-by-line comments which demonstrate

various MUMPS programming techniques.

· ANSI Language Standard contains the ANSI-approved

specifications for MUMPS computer language.

· Computer Programming in Standard MUMPS is filled with

examples that can provide the experience of programming,

even for those without terminals.

· Introduction to Standard MUMPS provides a step-by-step

approach to MUMPS programming methods.

· MUMPS Information Packet introduces MUMPS, the

MUMPS Users’ Group and the MUMPS Development

Committee. It contains lists of Standard MUMPS

implementations, MUMPS applications and institutions, and

vendors of MUMPS software and services.

· MUMPS Primer discusses the language from the perspective

of computer science and software engineering.

· MUMPS Programmers’ Reference Manual is the basic source

of detailed interpretations of formal specifications of the

language.

· MUMPS Software Sources list consists of an alphabetical

listing of MUMPS software vendors, with sections cross-

referenced for the applications and services they provide.

· The MUMPS Handbook of Efficiency Techniques for advanced

MUMPS users, is devoted to over 100 ideas and procedures to

improve the speed and efficiency of MUMPS programs.

· Transactions of the MDC (the MUMPS Development Committee)

is a subscription service providing minutes of MDC meetings, held

three times a year.

PUBLIC DOMAIN SOFTWARE
Tapes and floppies are available from the MUMPS Users’ Group Prototype

Applications Library (MUGPAL) to MEMBERS ONLY. Public domain

packages including the VA FileMan, KERNEL, and others may be ordered.

Please write for a complete list with prices.

MUMPS USERS’ GROUP

4321 Hartwick Road, Suite 510

College Park, Maryland 20740

Supporting Sponsors (continued)

SDK Healthcare Information Systems

1550 Soldiers Field Road

Boston, MA 02135

(617) 783-7351

SDK Healthcare Information Systems designs, markets and supports

a full line of administrative, patient-care, and clinical information

systems available as a total integrated hospital wide system or as

stand alone modules for individual applications.

32

ACKNOWLEDGMENTS

 This third edition, compiled by Joel Achtenberg, constitutes an expansion and revision of the original Pocket Guide written by Joan Zimmerman under grant number HS-01540 from the National Center for Health Services Research, Department of Health, Education, and Welfare. Special thanks are due Dan Schullman, Joan Zimmerman, George Timson, and Thomas Salander. Substantial contributions to both editions have been received from many members of the MUMPS community, particularly Jack Bowie, Robert Greenfield, David Sheretz, Robert Stimac, Tony Wasserman, and Jerry Wilcox.

Copyright MUMPS Users’ Group, 1987

DATA TYPES AND VALUES

 The first thing to consider is the types of data which may be manipulated in Standard MUMPS. The situation is quite simple because there is only one data type: the variable-length character string, which may consist of any of the 128 ASCII codes. [To insure portability, the current limit on MUMPS string length is 255 characters.]

 A number is regarded merely as a special case of a string, and MUMPS contains a well defined rule of interpreting any string as a number. A numeric value (that is, the value of a number) may contain a decimal fraction. However, some arithmetic operations produce an integer value, which is a special case of a numeric value. Accordingly, MUMPS also contains a rule for interpreting any number (and, by inference, any string) as an integer. Relational and logical operations (see below) produce a special numeric value called a truth value. There are two truth values: the integer 0, which denotes “false”; and the integer 1, which denotes “true”. The interpretation rules are discussed under OPERATORS, below.

 [To insure portability, the value of a number should have no more than nine significant digits. The absolute value should lie between 1025 and 10-25, or be zero.]

VARIABLES
 A variable is an entity whose value may be changed. There are three variable types: local variables, each of which is unique to a user and whose value may be inspected and/or changed only by that user; global variables, each of which may have its value inspected and/or changed by any authorized user; and special variables, whose values are changed by the MUMPS

2

system and cannot be changed directly by a user.

 Each variable is referenced by a variable name. Local and global variable names begin with either “%” or an alphabetic. Subsequent characters may be any of the alphabetics or any of the ten digits. Names may be any length. [To insure portability, however, names should be distinguishable by their first eight characters and should not contain lower-case alphabetics.] A global variable name is designated by a leading caret (^) symbol, as in ^MUG. A special variable name is denoted by a leading dollar ($) symbol, as in $TEST. Special variables are discussed in a section below.

 Local and global variables may be subscripted in order to facilitate the grouping of values into sets (called arrays). For example, it might be more convenient to replace the variable names GAME, SET, and MATCH by A(1), and A(2), and A(3) respectively. In this case, only one level of subscripting is used, but more can be used if desired. For example, A(1,4,13) has three levels of subscripting. Both A(1) and A(1,4,13) are said to be descendants of A and A(1,4,13) is also a descendant of A(1).

 Any character string can be used as a subscript. [For portability, however, negative-valued numerics are not allowed. Furthermore, each subscript must consist of from 1 to 31 graphic characters, and the total length of a global variable reference with all its subscripts may not exceed 63 characters.]

 A naked global reference is a shorthand syntax for specifying a global variable by omitting the variable name and possibly some of the subscripts. The first subscript in the subscript list of a naked global reference implicitly refers to the last subscript level of the most recent global reference. Thus, if a reference has been made to ^X(1), a subsequent naked reference to ^(2,3) would access the value of ^X(2,3). Note that “last global reference” includes any reference to any global. (Exception: see LOCK command.)

 Another shorthand syntax for subscripted local or global variable names is the ‘namespace,’ denoted by paired “@” signs. The first subscript in the subscript list following the second “@” in a ‘namespace’ reference refers to the subscript level one below that named by the value of the expression between “@” signs. Thus, “@X@(2,3)” refers to ^Z(1,2,3) if X = “^Z(1)”, but to ABC(2,3) if X = “ABC”.

3

Honeywell Information Systems Inc.

900 Middlesex Turnpike, #6

Billerica, MA 01821

(617) 671-7011
The Honeywell Information Systems FAMUS 6 product offers

high-speed performance, flexibility and response time for your

MUMPS applications. FAMUS 6 combines all the advantages of a

Honeywell DPS 6 Computer System running ANSI Standard MUMPS

in a layered multi-user environment. It is ideally suited for interactive

applications requiring a large shared database where immediate data

retrieval and prompt response are important.

Interactive Learning Systems

211 Vaughn Hill Road

Bolton, MA 01740

(617) 779-2914

ILS is dedicated to MUMPS and File Manager Training. Courses are

offered publicly or on-site as well as through Computer Based

Instruction. The MUMPS Learning Series is a comprehensive, time

proven set of programming, system management and concept courses.

Micronetics Design Corporation

5 Choke Cherry Road

Rockville, MD 20850

(301) 258-2605

Micronetics provides multi-user MUMPS for IBM PC’s and compatibles

under MS-DOS, DEC VAX systems under VMS, IBM 43xx and 30xx

under VM, HP 3000 under MPE and HP 9000 under UNIX*, and versions

for most UNIX or XENIX based systems. Supporting packages, including

Display Management System (forms package), financial packages (A/R.

GL, Payroll, etc.) and other tools.

Plus Five Computer Services

765 Westwood Drive

St.Louis, MO 63105

(314) 725-9492

Plus Five Computer Services offers UNIX MUMPS, a MUMPS

implementation that runs under UNIX* version 7 or later or an equivalent

operating system; this implementation is available on a very wide range of hardware.

*UNIX is a trademark of Bell Laboratories.

31

The MUMPS User’s Group wishes to thank the

following sponsors for their generous support in the
publication of this book.
DATA Methods Incorporated

One Blue Hill Plaza

Pearl River, New York 10965

(914) 735-8333

DATA Methods is completely dedicated to fully-supported office automation packages written in MUMPS. The WORD MANAGER for word processing, CALC MANAGER for spread sheet, GRAPH MANAGER for graphics as well as a host of support products and programmers’ tools have been installed in many hundreds of sites, large and small, world-wide.

DATATREE, Inc.

318 Bear Hill Road

Waltham, MA 02154

(617) 890-1620
DATATREE builds, sells, and vigorously supports very high performance

MUMPS implementations for PC, minicomputer, and super-minicomputer

systems.

Digital Equipment Corporation

Two Iron Way, Box 1003

Marlboro, MA 01752-9103

(617) 467-7621

Digital Equipment Corporation is the world’s largest provider of MUMPS

systems and applications environments. Digital offers two MUMPS

products: DSM-11, a multi-user operating system and ANSI MUMPS

interpreter for the PDP-11 family of computers, and VAX DSM, an

ANSI MUMPS language implementation layered on VAX/VMS

computer systems.

Greystone Technology Corp.

8 Lakeside Office Park

Wakefield MA 01880

(617) 246-0461

Greystone’s GT.M, an ANSI standard MUMPS system, makes the full power of VAX computers available top MUMPS users. The company also provides

conversion tools as well as education courses using GT.M with VMS, the

VAX operating system.

30

LITERALS

 A literal has a constant value and is interpreted directly. There are both numeric and string literals. A numeric literal has a mantissa optionally followed by the letter “E” and an exponent (e.g. 0.34, 10E5, 1.2E-7, -1456). A string literal consists of a set of characters enclosed in quotation marks. The empty string is represented by two adjacent quotes (“”). If quotes are to be embedded within a string, each must be represented by two adjacent quotes (“THE “”KNOWN”” VALUE”). Such embedded quotes are counted as one character, not two, when determining string length. A string literal consists of zero or more of the 95 ASCII graphics enclosed in quotes, whereas a string value may contain any of the 128 ASCII characters.

OPERATORS
 The operators in standard MUMPS are grouped into seven types, as follows:

 Arithmetic Unary Operators

 Arithmetic Binary Operators

 Arithmetic Relational Operators

 String Binary Operators

 String Relational Operators

 Logical Operators

 Indirection

 These groups differ in the interpretations made of their arguments. Each of the arithmetic operators takes the numeric interpretation of its arguments before performing the indicated operation. This involves taking the leftmost portion of the string which is either exponential (e.g. 86E5), decimal (-182.45), or integer (1964) in form. The result of such a numeric interpretation is called a canonic number. If no such form begins the string, the numeric interpretation is zero. The integer interpretation of any value is formed from the numeric interpretation by dropping any fraction. The logical operators interpret their arguments by first forming the numeric interpretation; if the result is 0 the interpretation is “false”, otherwise, it is “true”. The string operators require no special interpretation of their arguments since all data in standard MUMPS are treated as strings. Note: evaluation is left to right after unary identification (3/-6 = 3 divided by –6).

4

INTERPRETATION

STRING NUMERIC INTEGER TRUTH

 VALUE

“810” 810 810 1

“98 POUNDS” 98 98 1

“” (empty string) 0 0 0

“ 35”

 0 0 0

“86+9” 86 86 1

“PAGE 10” 0 0 0

“-8.4” -8.4 -8 1

“86E – 1” 8.6 8 1

“---9” -9 -9 1

“-0” 0 0 0

 Each of the Arithmetic, String, and Logical operators is described along with examples, in the table on the following pages. Indirection, although formally an operator, is somewhat unique in its use, and is therefore discussed below in a separate section.

INDIRECTION
 Indirection allows data values to be interpreted as MUMPS code. Indirection is denoted by the character @ followed by an expression. The value of the expression is substituted for the occurrence of the indirection before the rest of the line is interpreted. The substitution is temporary, taking place each time the instance of indirection is encountered. This allows the same segment of MUMPS code to be executed repeatedly with differing values of the expression yielding different results. Furthermore, indirection can be nested, giving even greater flexibility. There are three basic types of indirection:

 In Argument Indirection the indirection occurs in place of a command argument, and the value must be one or more complete command arguments.

 e.g. S PRINTER=3, TERMINAL=0

 R !, “DEVICE TYPE?”, DEV OPEN @DEV

In this example, the user enters “PRINTER” or “TERMINAL” to open either device 0 or device 3.
 e.g. S USERCODE=”B”

 S @(“AA”_USERCODE_”=99”)

 In Name Indirection the indirection occurs in any context where a named variable can occur and the value of the indirection must be a complete variable name, possibly including subscripts.

5

APPENDIC II: IMPLEMENTATION-

SPECIFIC FEATURES
SPACE IS PROVIDED BELOW FOR USERS

TO DEFINE IMPLEMENTATION-SPECIFIC

FEATURES OF THEIR SYSTEM

29

APPENDIX I: Table of ASCII Charaters
The character notation is that used in ANS X3.4-1968. The

code values are those which appear as values of the $ASCII

function and arguments of the $CHAR function.

Code
Char.
Code
Char.
Code
Char.
Code
Char.

 0
NUL
 32
 SP
 64
 @
 96
 `

 1
SOH
 33
 !
 65
 A
 97
 a

 2
STX
 34
 “
 66
 B
 98
 b

 3
ETX
 35
 #
 67
 C
 99
 c

 4
EOT
 36
 $
 68
 D
 100
 d

 5
ENQ
 37
 %
 69
 E
 101
 e

 6
ACK
 38
 &
 70
 F
 102
 f

 7
BEL
 39
 ‘
 71
 G
 103
 g

 8
BS
 40
 (
 72
 H
 104
 h

 9
HT
 41
)
 73
 I
 105
 i

 10
LF
 42
 *
 74
 J
 106
 j

 11
VT
 43
 +
 75
 K
 107
 k

 12
FF
 44
 ,
 76
 L
 108
 l

 13
CR
 45
 -
 77
 M
 109
 m

 14
SO
 46
 .
 78
 N
 110
 n

 15
SI
 47
 /
 79
 O
 111
 o

 16
DLE
 48
 0
 80
 P
 112
 p

 17
DC1
 49
 1
 81
 Q
 113
 q

 18
DC2
 50
 2
 82
 R
 114
 r

 19
DC3
 51
 3
 83
 S
 115
 s

 20
DC4
 52
 4
 84
 T
 116
 t

 21
NAK
 53
 5
 85
 U
 117
 u

 22
SYN
 54
 6
 86
 V
 118
 v

 23
ETB
 55
 7
 87
 W
 119
 w

 24
CAN
 56
 8
 88
 X
 120
 x

 25
EM
 57
 9
 89
 Y
 121
 y

 26
SUB
 58
 :
 90
 Z
 122
 z

 27
ESC
 59
 ;
 91
 [
 123
 {

 28
FS
 60
 <
 92
 \
 124
 |

 29
GS
 61
 =
 93
]
 125
 }

 30
RS
 62
 >
 94
 ^
 126
 ~

 31
US
 63
 ?
 95
 _
 127 DEL

28

$X

$X is the column or horizontal position at

which the carriage (for a printing device) or

the cursor (for a video terminal) lies for the

current device. The first column is defined as

column 0, the second column as column 1,

and so on. Therefore, $X is 0 at the start of a

line. After the first character in a line has

been written, $X is 1. $X is initialized to zero

by carriage return, and incremented by 1 for

graphics.

$Y

$Y is the vertical position on the current device.

The first line is defined as line 0, the second as

line 1, and so on. $Y is initialized to zero by a

form feed, and incremented by 1 for each line

feed.

$Z__

Each nonstandard special variable should begin

with “$Z”.

{EXTRINSIC VARIABLES
 An extrinsic variable is an argumentless extrinsic function

(i.e. there is no parenthesised list of parameters following the

name of the extrinsic variable).}

FORMAT CONTROL
 The following characters are used for format control during

data display:

?
specifies tab (right shift) to the column specified by the

integer value of the expression following the question

mark. For example, ?X tabs to column X. Remember

(see $X above) that MUMPS regards the first column

as column 0, the second as column 1, and so on. If

X>$X no shift takes place.

!
specifies carriage-return and line-feed, or similar

new line operation.

#
specifies a form-feed or new page, or similar operation.

27

 {EXTRINSIC FUNCTIONS
 An extrinsic function allows accessing MUMPS code as a function

 rather than using the DO command. The first two characters of the

 extrinsic function are “$$” followed by a label name followed by

 one or more arguments in the same general format as regular

 functions. “S X=$$TIME($H,2)” is functionally equivalent to

 D TIME($H,2,.X).” The only difference in the code at label TIME

 is that, when called by an extrinsic function, TIME must be

 terminated by an argumented QUIT command (the argument of QUIT

 will be the value returned by the extrinsic function). A call-by-

 reference (a variable precede by a “.”) is not allowed as a parameter

 in an extrinsic function.}

 SPECIAL VARIABLES
 Each special variable is denoted by the initial character of “$”

 and has a unique name which may be abbreviated to its initial

 letter. The value of a special variable may be used as part of any

 general expression. Note, however, that a user is not permitted to

 assign a value to a special variable. All unspecified initial letters

 are reserved for future use.

 Special

 Variable
Explanation
 $HOROLOG
$HOROLOG provides the date and time in a

single two-part string. The two parts are separated

by a comma. The first part is the number of days

since 31 December 1840, and the second part

is the number of seconds since midnight. “0,0”

is the first second of 31 December 1840.

 $IO

$IO provides the unique identification of the

current input/output device.

 $JOB

Each executing MUMPS process has its own

unique job number, a positive integer, which

is the value of $JOB.

 $STORAGE
$STORAGE is the number of used characters

remaining in the user’s partition.

 $TEST

$TEST contains the last computed truth value.

The value is set by execution of the most recent

IF command containing an argument, or by an

OPEN, LOCK, or READ with a timeout.

26

 ex. ENTER THE NAME OF A PARAMETER: “,X

 W !,”ENTER THE VALUE OF “, X R “:”,Y

 S @X=Y
yields the variable “SEX” equal to “MALE” if the user answers the two questions with “SEX” and “MALE”.

In Pattern Indirection the indirection occurs in place of a pattern, and

the value must be a pattern.

 ex. S X(1)=”1””$””1N.N”, Y(1)=”MONEY”

S X(2)=”5U.U”, Y(2)=”WORD”

FOR I=1,2 IF STRING?@X(I) WRITE !,Y(I) Q
yields “DOLLARS” if STRING is one or more digits preceded by a

dollar sign, or “WORD” if STRING is five or more upper-case letters.

Note that the XECUTE (@) command (see below) also provides a means of performing indirection.

EXPRESSIONS
The simplest expression in MUMPS is a variable, a string literal, a numeric constant, or a function (functions are discussed in a section below). Examples of each of these four types of expression are respectively:

VARIABLE

“LITERAL”

45.73

$LENGTH(XYZ)

Such simple expressions are called atomic expressions. More complicated expressions can be built by linking a number of atomic expressions by means of the arithmetic and other types of operator. For example:

SUM/TOT

SEX=”MALE”

“BOY”_”HOOD”

All MUMPS expressions are evaluated from left to right. There is a hierarchy of operators: unary operators are executed before indirection,

which is executed before binary and relational operators. There is,

however, no hierarchy among binary and relational operators. Parentheses can be used to modify the order of evaluation.

10
COMMANDS
 A command defines an action to be taken. A command is usually

 (but not always) followed by an argument (or a series of arguments

separated by commas) upon which the command acts. Most command words may be abbreviated to their initial letter, or may be fully spelled out. Note

that partial abbreviations are not allowed. Thus, “B” is a legal abbreviation for “BREAK” but “BR” is not. All unspecified initial letters are reserved for future use.

LINES AND ROUTINES
 A routine in MUMPS consists of an ordered series of lines. Each

line consists of a line-start indicator (the space character), optionally

preceded by a line label., followed by zero or more commands with their associated arguments, optionally followed by a comment. A command word

(BREAK, CLOSE, etc.) is separated from its argument by a single space.

Multiple commands in a line are separated by one or more spaces;

argumentless commands (like QUIT or HALT) must be followed by at least two spaces if subsequent commands appear in the same line. In general, for any command Z with arguments A and B, “Z A Z B” is equivalently

written “Z A,B”. Note that the commands FOR, IF, and ELSE take within their scope all commands that follow them on the same line.

 A comment is preceded by a semicolon; the semicolon is preceded by at least one space if it follows a command. Characters following the semicolon are not treated as executable MUMPS code.

 Line labels must be unique within a routine. A line label may be either an

integer, or a string of alphanumeric characters preceded by “%”, or a

string of alphanumerics beginning with an alphabetic. [For portability,

labels, like variable names, should be distinguishable by their first eight

characters and should not contain lower-case alphabetics.]

 [The length of a routine line, including any label and comment, is limited

to 255 characters. There is no explicit limit on the number of lines in a routine, but the routine, plus all local variables and temporary result

storage defined at execution time, should not exceed a total of 4000

characters.]

11

 The commands DO, GOTO, XECUTE, and {VIEW} permit

post-conditionalization of arguments and/or post-

conditionalization of the command itself. This means that an

argument of any of these commands may be followed by a colon and then a truth-valued expression. If the expression is true, that argument

is used. Otherwise, it is not. For example:

DO FIND:AA=100,NEXT

will execute the code beginning at the line labeled FIND only if

A equals 100, but will always execute the code beginning at the

line labeled NEXT. Thus, only an argument that has been post-conditionalized is affected. All arguments and further command-argument pairs to the right of a post-conditionalized argument

are executed as they would be normally.

 The following example illustrates post-conditionalization of both

command and argument:

DO:B=”OK” FIND:A=3,NEXT

FUNCTIONS
 Each function is designated by an initial character of “$”, and

has a unique name which may be substituted with its abbreviation.

This specification of the function is followed by one or more

expressions in parentheses. The first expression generally

signifies the string or number which is to be examined or

manipulated. Any subsequent expressions qualify the function’s effect. All unspecified initial letters are reserved for future use.

 Some functions, like arithmetic and logical operators, interpret the

value of their arguments. Other functions require arguments to be line labels or variable names. The following codes will be used to indicate

such restrictions. In each case “n” represents the position in which the

expression is used.

En
general (unrestricted) expressions

{FL
numeric-format-control-valued expressions

 (+ - , T P or combination)

In
Integer-valued expressions

Tn
Truth-valued expressions

Nn
Numeric-valued expressions

L
Labels

VN
Variable names

20

TIMEOUTS ON COMMANDS
 A timeout may be used with arguments of the LOCK, OPEN, JOB, READ, and {VIEW} commands to specify the maximum time during which MUMPS will await the completion of the associated

operation. If a timeout is to be used, it is specified by following an

argument of any of the commands with a colon and then an

expression whose value is an integer. For example:

READ ANSWER:TIME

will wait for up to TIME seconds to obtain ANSWER. If the numeric

value following the colon is positive, that value specifies the maximum number of seconds waited for the completion of the operation. If the

numeric value following the colon is zero or negative, execution

continues without delay. Note that if a LOCK, OPEN, JOB, or READ

command without a timeout specification is satisfied before the time

runs out, the special variable $TEST (discussed below) is set to 1;

otherwise $TEST is set to 0. If no timeout is specified, $T is not

affected and execution of the command proceeds after the condition

associated with the command (for example, termination of the input

message for the READ command) is satisfied. Therefore, execution

can be suspended indefinitely.

POST-CONDITIONALS ON COMMANDS

AND ARGUMENTS
 The IF command may be used to place a condition upon whether

or not the remainder of the line following the IF command is executed.

Alternatively, an individual condition may be placed upon most of the commands by appending a colon and then a truth-valued expression

to a command word. This may be done for all commands except

ELSE, FOR, and IF. For example:

SET:A=3 NEXT=47 GOTO LINE

means that NEXT has the value of 47 assigned only if A has the

value 3, but the GOTO command is always executed. The first

command is said to be post-conditionalized. It is executed only

if the expression immediately following the command and colon

is true. Note that unlike the IF command, only the post-

conditionalized command is affected; all commands to its right

are still executed as they would be normally. Also, the value

of $TEST is not affected.

19

Table of Operators

Operator Symbol		Meaning					Examples		Results & Comment

 ARITHMETIC UNARY OPERATORS

 +			Takes the numeric interpretation			+2			2

								+”34A”			34

 -			Takes the numeric interpretation and 		-A			-7 if the value of A is 7

			negates it.					-“34A”			-34

 ARITHMETIC BINARY OPERATORS

 +			Produces the sum				2+7			9

								A+3			The value of A plus 3

 -			Produces the difference			2-7			-5

								A-B			The difference between A and B

 *			Produces the product				2*7			14

 /			Produces full division				7/4			1.75

			Division by 0 creates a run-time error

 \			Division with the result truncated to an integer	7\4			1 (No decimal places)

								A\5			0 where A is greater than –5 but less than 5

 #			Produces the value of the left argument modulo	11#3			2 11/3 = 3 with remainder = 2

			the right argument (i.e., it gives the remainder)	-11#-3			-2

 / $J			Justify rounding – Rounds to specified (J) decimal

Table of Operators (continued)

Operator Symbol		Meaning					Examples		Results & Comment

 ARITHMETIC RELATIONAL OPERATORS

 <				Less than				MINIMUM<8		1 if the numeric valueMINIMUM is

											less than 8; otherwise = 0

 >				Greater than			MAXIMUM>LIMIT 	1 if the numeric value of MAXIMUM is

											greater than the numeric value of LIMIT.														Otherwise = 0

 STRING BINARY OPERATOR

 __		 		Concatenates			“GO”_END		“GOING” if END = “ING”

 (underscore)										“GOES” if END = “ES”

						 					“GO” if END = “”

 STRING RELATIONAL OPERATORS

 =				Equals				NAME=”JONES”		1 if the value of NAME is “JONES”;

											0 otherwise

 [Contains				NAME[“SON”		1 if the value of NAME contains “SON”;												0 otherwise

]				Follows: evaluates (sorts) 2nd operand	NAME]”M”		1 if the value of NAME follows “M” before 1st				True=1 False =0						the ASCII collating sequence; 0 otherwise	

Table of Operators (continued)

Operator Symbol		Meaning					Examples		Results & Comment

 ?				Pattern matches			NAME?2A		1 if the value of NAME contains exactly

											two alphabetic; 0 otherwise

				For the pattern-match operator the allowed	NAME?1A.A		1 if the value of NAME has one or more

				codes are:							alphabetics; 0 otherwise

				A (for the 26 upper and 26 lower-case alphabetics);

				C (for the 33 control characters);

				E (for the entire set of 128 characters);

				L (for the 26 lower-case alphabetics);

				N (for the 10 numeric characters);

				P (for the 33 punctuation characters);

				U (for the 26 upper-case alphabetics);

				or any string literal.

				The number of occurrences of each pattern type may be specified exactly

				 by a preceding integer, or may be left inexact by a preceding “.”.

				Thus, “1N” checks for exactly one numeric character and “.P” checks for

				any number of punctuation marks, including none. A range of allowable

				occurrences may be indicated by integers before and/or after “.”. Thus

				 “3.5N” checks for 3, 4, or 5 numeric characters, and “.9P” checks for

				up to nine punctuation marks. Allowed patterns may be combined into

				groups. For example, while “.A” checks for alphabetics and “.P” checks for

				punctuation, “.AP” checks for both alphabetics and punctuation; note that

Table of Operators (continued)

Operator Symbol		Meaning					Examples		Results & Comment

			“.PA” has the same effect. However, literals may not be

			combined with pattern codes (i.e. .A”7” is not allowed.

LOGICAL OPERATORS

 &				And				A&B			1 if A and B are true

											0 if A and B are not both true

 !				Or				C!D			1 if C or D is true

											0 if neither C nor D is true

 ‘ (apostrophe)		Not					‘E			1 if E is false

I.e. ‘= Not equal ‘< Not less than ‘? Not match				0 if E is true

‘[Not contained Note that not (‘) may be used in conjunction

with any arithmetic relational or string relational operator (e.g.

A’=3, which is the same as ‘(A=3)).

 _ (underscore)		Join string binaries				A_B			returns string A and string B as one string

 @			Execute. Executes MUMPS code (in a routine, indication, or command).

			by argument, name, partial name or pattern.

Table of Functions (continued)

Function Name

and Syntax		Explanation						Examples		Results

{$TRANSLATE		$TRANSLATE returns the string E1 modified by replacing		TR(“ABCABC”,	BaB

 (E1,E2)			every character in E1 that matches the nth character in	 		C”,”a”)

$TRANSLATE		E2 with the nth character in E3. If the nth character in E3		TR(35.63,”.”)	3563

 (E1,E2,E3)		is null, (i.e., $L(E3)<$L(E2)), each character in E1 that	

			matches the nth character in E2 is deleted. In the 2

			argument form, each occurrence of every character in E2

			is deleted from E1.}

$VIEW			$VIEW is an implementation-specific function available

 (argument syntax		(at the option of the implementor) for providing

 specified by the		implementation-specific data. $VIEW reveals machine

 implementor)		dependent data.

$Z__			Any additional function not included in the Standard

			MUMPS should begin with “$Z”.

%ZG			View Globals

% ZGZ			Edit Globals

%ZGC			Copy Globals

Table of Commands (continued)

Command		Examples		Explanation

FOR(contd) 				(using a negative increment), then the expression format, and finally the “endless” loop. Note that a

					QUIT or GOTO command terminates all forms of the FOR loop, not just the “endless” loop, and that a

QUIT will terminate only the most recent in a series of nested FOR loops, whereas GOTO will terminate all active FOR loops.

GOTO			G NEXT		GOTO transfers execution of code (without return) either to a line of code in the same routine (for

			G ^ROUTINE	example, G NEXT), to the start of a specified routine (for example, G ^ROUTINE), or to a particular

		G LINE^ROUTINE	line of code in a specified routine (for example, G LINE^ROUTINE causes execution to be transferred	G@VARIABLE	to the routine named ROUTINE at the line named LINE). (Note that if return of control is required, the

					DO command should be used.)

HALT			H		First LOCK (see below) with no arguments and CLOSE of all devices opened by this job are executed

					(although these are not stated explicitly). Then execution of the current process is terminated. HALT

					does not take an argument.

HANG			H 3		HANG suspends execution for the number of seconds specified by each argument (such as 3 or

			H TIME		TIME).If an argument is less than zero, execution is suspended for zero seconds. Note that HANG							always has an argument, while HALT never has an argument.

IF			I		IF permits conditional execution. In its argumentless form, execution is dependent upon the value of

			I A=3		$TEST. If the value of $TEST is 0 (false), the remainder of the line to the right of the IF is not

			I B=”B”, A>4	executed. If the value of $TEST is 1 (true), execution continues normally at the next command on the

			I C=4! (C=5)	line. If one argument is present (such as A=3), the argument is evaluated to be true or false and $TEST			I $D(X),X=4	is set to 1 or 0 respectively; then the IF command is executed as in the argumentless form. A series of					

Table of Commands (continued)

Command		Examples		Explanation

DO (cont) 	START(A,B,C,D,E). When execution begins at the label START, each of the 5 variables in the receiving list (A,B,C,D, and E) are NEWed, then each of the parameters is evaluated starting at the left and the resulting value stored in the corresponding receiving variable (e.g. the value of NAME is stored in A, the value of the variable named in X is

	stored in B, 16 is stored in C, and the value of SALARY is stored in D; variable E remains undefined). Variables in the parameter list preceded by a period will reflect all the changes to the receiving variable (e.g. the variable SALARY will contain the value of the D variable when the subroutine START is completed; if the variable D is KILLed the variable SALARY will be undefined).}

										

ELSE			E		ELSE permits conditional execution dependent upon the truth value of the special variable $TEST

					(discussed below). Execution of the remainder of the line to the right of the ELSE command continues

					only if the value of $TEST is 0 (false). If $TEST is 1 (true) any commands to the right of ELSE are not

					executed. ELSE does not take an argument.

FOR			F I=7,”BD”	FOR specifies the repeated execution of all the commands following it on the line. There are three

			F J=2:4:20		formats. First is the expression format, where a local variable is assigned a value such as the value of

			F K=1:1		7, or “BD”. Second is the range format, where a local variable is set to an initial value and then

			{F}		incremented in specified steps until it reaches or exceeds a limiting value; in the second example, the

			F L=10:-1:0,13,15:1	initial value is 2, the incremental step is 4, and the final value is 20. Note that in this case 18 is the last

					value of J for which the associated commands will be executed. Third is the “endless” loop format

					wherein only an initial value and an incremental value are specified, as shown in the third example {or

					where no argument is given (as in the fourth example)}; the “endless” loop is broken only by execution

					of a QUIT or GOTO command within the instructions following the FOR command. Any of the above

					formats may be mixed {except the argumentless form}; in the final example, we show the range format

					

Table of Functions (continued)

Function Name

and Syntax		Explanation					Examples		Results

$ORDER (contd)		arranges all canonic numeric subscripts in numeric				if ^STATE is subscripted with

			sequence, followed by all other subscripts in ASCII				50 state names

			collating order (see Appendix I).

$PIECE(E1,E2,I3)		$PIECE takes from a specified string, E1, that substring	$P(“A.BX.Y”,”.”,2)	“BX”

$PIECE(E1,E2,I3,I4)		which lies between two specified occurrences of a 		$P(“76A666”,6,1,4)	“76A66”

$PIECE(E1,E2)		particular dividing string, E2. The resulting substring		$P(ST,”,”,2) exact	“” if ST contains no comma (one specific

		begins immediately after the (I3-1)th occurrence of the				piece)

 			dividing string, and ends immediately before the (I4)th		$P(X,Y,1)		X if X does not contain Y from/to=1

			occurrence. I4 is taken equal to I3 if no 4th argument		$P(X,Y)		$P(X,Y,1)

			appears. I3 is taken equal to 1 if no 3rd argument appears.	$P(string,delimiter,	copy # of pieces including [from,to]

			Note that the $PIECE syntax can occur on the left side	 	[from, to])

			of the “=” sign in a SET command argument.

{$QUERY(VN)		$QUERY returns the next subscripted VN (in collated	assume the following array is defined:

			sequence) that has a value. If no subscripted variable		A(3)

			within the array follows VN, a null value is returned.		A(8)

									A(8,3,7)

									A(9)

										

									$Q(A)		“A(3)”

									$Q(A(3))		“A(8)”

									$Q(A(8))		“A(8,3,7)”

									$Q(A(8,3,9))	“A(9)”

									$Q(A(9,1))	“” null value}

Table of Commands

Command		Examples		Explanation

BREAK			B		BREAK provides an access point within MUMPS for direct mode (nonstandard) programming and

					debugging aids. It suspends execution until receipt of a signal (not specified) from a device. BREAK

					does not normally take an argument, and any arguments used are implementation-specific.

CLOSE			C 4 (device id)	CLOSE releases the listed device from ownership; for example, it releases device 4 or MT1. A list of

			(specific close only)	implementation-specific device parameters may be placed after a device name if desired. If the current

			C MT1:(devparms)	device is closed, the special variable $IO will be empty or reset to a default value, depending upon the

			C (releases all)	implementation.

DO			{D}		{The argumentless DO command begins execution of the next “sub-block” of code following the line

			D NEW, OLD	containing the argumentless DO. Each line in the “sub-block” will begin with a period or, if the line

			D ^A		containing the argumentless DO is itself within a sub-block, one period more than the number of

			D LINE^ROUTINE 	periods at the beginning of the line containing the argumentless DO. On termination of execution of a

D @VARIABLE		sub-block (by either an explicit or implicit QUIT), execution continues after the argumentless DO.}

			{D START(NAME, 	Each of the line labels (for example, NEW and OLD) listed in the argument are found in turn and the

		 	@X, “16”,		code following each label is executed until the end (specified below) is reached. If “^” precedes a label

		 	.SALARY)}	(as in the case of ^A) the routine whose name (A) follows the “^” character is executed. Execution

starts at the first line of the named routine unless a line label (for example, LINE) is specified in front of the “^”. In the latter case, execution starts in the routine named ROUTINE at the line labeled LINE. Execution returns immediately to the next argument of the next command after executing a QUIT command or reaching the end of a routine (provided this was not within the scope of a subsequent DO command or a FOR command). Indirection (e.g. “@VARIABLE”) can be used to begin execution of the line or routine whose label is contained in a variable. {A list of parameters may be appended only if the label being called has an appended list of variables at least as long as the list of parameters. In the example, the label START may appear in the code as:

Table of Functions (continued)

Function Name

and Syntax		Explanation						Examples		Results

$FIND(E1,E2)		$FIND returns an integer which specifies the end position	$F(“ABC”,”B”)		3

$FIND(E1,E2,I3)		plus one of a substring (E2) within a string (E1). If a third	$F(“ABCABC”,”A”,3) 	 5

			expression, I3, is specified, the search in E1 or E2		$F(string, find string, [from])

			begins at the character in position I3. Otherwise the		$F(A,” “,3)	A= “ “ B=6 6th position, 1st after Find of

			search begins at position 1. If the portion of E1 beginning			“ “, starting position 3

			at I3 (or 1) is the empty string or does not contain E2 the

			result is 0 (zero). If E2 is null (but not the portion of E1

			beginning at I3 0r 1) the result is I3.

{$FNUMBER(N1,FL)	$FNUMBER formats the number in N1 according to the	$FN(12,”+”)	+12

$FNUMBER		code(s) specified in FL.				$FN(-20*33,”T”)	 660-

 (N1,FL,I3)		 + display plus signs for positive values			$FN(-1,”P”)	(1)

			 - suppress minus signs for negative numbers		$FN(12345.6789,”,”) 12,345.6789}

			 , insert commas every third position to the left of the decimal

			 T trail any displayed sign

			 P display negative values in parenthesis (may not be used in combination with T)

			

			When 3 arguments are given the N1 is rounded to have I3

			decimal places after the decimal point (including possible

			trailing zeros).

{$GET(VN)		$GET returns the value of a variable, or a null string if VN	$G(Y)		returns the value of Y if $D(Y)#2=1

			has no defined value.					$G(Y)		returns the null string if $D(Y)#2=0}

Table of Functions (continued)

Function Name

and Syntax		Explanation					Examples			Results

						

$JUSTIFY(E1,I2)		$JUSTIFY with 2 arguments returns the value of		$J(39,3)			“39”

$JUSTIFY(N1,I2,I3)		expression E1, right-justified within a field of size E2.		$J(39,4,1)			“39.0”

$J(string, field width,		However, if I2 is less than or equal to the length of E1, the	$J(-5/3,0,0)		“-2”

 decimal places)		value of E1 is returned unchanged. When 3 arguments are	S A=2,B=$J(99.129,6,2)	B=99.13

			given the numeric interpretation of the first argument (N1)	(right justifies value output with automatic left

			is formed, this value is then rounded to have I3 decimal		padding and automatic rounding)

			places after the decimal point (including possible trailing

			zeros) and the result is right-justified in a field of I2 spaces.

$LENGTH(E1)		$LENGTH returns the number of characters in string E1;	$L(“ABC”)		3

$LENGTH(E1,E2)		that is, it returns the string length. When 2 arguments are	$L(X)			0 where X=””

$L(string)			given, the number returned is the number , plus 1. of non-	$L(“ABCABC”,”A”)		3 (delimiter “A” =

			overlapping occurrences of E2 in E1.			measures string		number of pieces)

$NEXT(VN)		$NEXT returns the next lowest existing subscript above		$N(A(-1))		-1 if no subscripts exist

			that specified in VN. If VN specifies a final subscript of		$N(A(1))		2 if A(2) is defined

			-1, $NEXT returns the lowest existing subscript. If there

			is no higher subscript, -1 is returned. Note that VN need

			not exist.

$ORDER(VN)		$ORDER, like $NEXT, returns the next existing subscript	$O(^STATE(“IOWA”))	“KANSAS”

			above that specified in VN. However, where $NEXT uses	$O(^STATE(“”))		“ALABAMA”

			-1, $ORDER uses the null string (“”) to indicate start		$O(^STATE(“X”))	“”

			and end. The ordering sequence used in both $N and $O	

			

			sequence, followed by all other subscripts in ASCII					50 state names

			collating order (see Appendix I).

Table of Functions

Function Name

and Syntax		Explanation					Examples		Results

$ASCII(E1)		$ASCII selects a character of a string and returns its		$A(“ABC”)	65 (ASCII character to code)

$ASCII(E1,12)		ASCII code. E1 specifies the string of interest. If I2 is	 not	$A(“ABC”,1)	65

			specified explicitly, it is assumed to have a value of 1.		$A(“ABC”,2)	66

			The character in position I2 of string E1 is extracted and	$A(X,2)		66 (where X=”ABC”)

			translated into the integer which represents it in the		$A(“”)		-1

			ASCII sequence.

$CHAR(I1)		$CHAR translates a set of integers into a string of		$C(65)		“A” (ASCII code to character)

$CHAR(I1,I2)		characters whose ASCII codes are those integers. I1,I2		$C(66)		“B”

$CHAR(I1,I2,. . .)		and so on are the expressions whose values are		$C(65,66)	“AB”

			interpreted as the integers. A negative integer yields an		$C(65,-1,66)	”AB”

			empty string.

$DATA(VN)		$DATA returns an integer specifying whether a variable is	$D(Y)		0 if Y is undefined

			defined or undefined. VN is the name of the local or		$D(Y)		1 if Y has a value but no descendant

			global variable of interest. The values returned are 0 if VN	$D(^A(1,5))	0, 1, 10 or 11

			is not defined, 1 if VN has a value but has no associated

			descendant array members, 10 if VN does not have a

			value but has at least one descendant and11 if VN has

			both a value and at least one descendant.

$EXTRACT(E1,I2)		$EXTRACT returns a character or substring of string EI	$E(“ABC”,2)	“B”

$EXTRACT(E1,I2,I3)	beginning at character position I2 and ending at		$E(VAR,3,5)	“CDE” if VAR=”XXCDE”

$EXTRACT(E1)		character position I3 or at the end of the string,		$E(VAR,3,999)	“10A” if VAR=”B910A”.

		whichever occurs first. I3 is taken equal to I2 if no 3rd		$E(S,90)		“” if S is less than 90 characterslong.

			argument appears. I2 is taken equal to 1 if no 2nd		$E(“XYZ,-6,2)	“XY”

	argument appears	.				$E(string,[from,to]) copies string characters by specific range

Table of Commands (continued)

Command		Examples		Explanation

IF (contd					arguments following an IF command is treated like a series of IF commands with single arguments, the					ultimate result being the same as if the arguments were “and”-ed together, except that as soon as one

					false argument is found, interpretation and execution of the line ceases.

JOB			J ^BATCH		JOB initiates execution of code in parallel to the routine that invokes it. A new process (job) is started

			J LINE^ROU	(without any local variables) at the routine entry point specified, but the invoking routine also

			{J START^PRO	continues execution. {If the routine name is followed by a parameter list, the entry point specified must

			 (2,NAME)}	have a list of receiving variables which are initialized in the same manner as parameter passing using

					the DO command.}

KILL			K		In its argumentless form, KILL permanently removes all existing local variables, including subscripted

			K A,NEW,^P(3)	local variables and all descendants. When an argument is specified, the local and global variables				K (SAVE,A)	named in the argument are deleted together with all descendant variables. In the second example, local

		*exclusive local (partition) 	variables A and NEW are removed, as are all nodes in global ^P which have a first level subscript of 3.					The “exclusive kill” is a special form of the KILL command where the argument of the KILL						command is a series of unsubscripted local variables (such as SAVE and A) contained in parentheses;					all local variables are killed except those named and their descendants. Note that KILL can be used to

					clear variables at the start of a routine (though this is not recommended). After such a KILL, the

					variables are no longer defined., that is the value table is cleared.

LOCK			L (unlocks all)	LOCK is used primarily as a software convention to avoid conflicting updates of named resources (that			L ^MUG		is limit access to one user at a time) (primarily global variables). For the non-incremental LOCK (i.e.				L (A,B,^G(4))	the argument is not preceded with a + or -), when executing each argument, LOCK releases all			time out	L X123:0		previously specified exclusive claims to resources. If any arguments are specified, new temporary

{L +INDEX}	exclusive claims are established to the named resources. If another user has exclusive claims on a		{L –INDEX}	resource named, the current user (that is, the one executing the LOCK command) remains suspended

					awaiting the availability of that resource. A “timeout” can be affixed to any argument of

Table of Commands (continued)

Command		Examples		Explanation

LOCK (cont)				abort an unsuccessful wait, as mentioned above. (Note that a series of named resources must LOCK to					in parentheses, as for L(A,B,^G(4)) but that parentheses are not required around the name of a be placed					resource.) LOCK has no effect on the value or definition of existing variables or on the “naked single single					indicator”. {Incremental LOCKing (e.g. LOCK +INDEX)will not affect previously LOCKed values

(i.e. they remain LOCKed), but each incremental LOCK of the same value is counted and must bedecrementally locked (e.g. LOCK –INDEX) as many times as it was incrementally LOCKed before it is released.} Note that LOCK of more than one global requires parentheses () and previous global released (e.g. L (^TE,^CO(7))). Also note that LOCK searches for ancestors and descendants, but unknown siblings may be aquired.

{NEW			N		The NEW temporarily removes variables; the removed variable will be returned to their original				N A,SAVE	$DATA status and value (if any) upon QUITing (explicitly or implicitly) out of the current DO or

			N (A,SAVE)	XECUTE. Only local , unsubscripted variables may be used in the argument of the NEW command. In					its argumentless form, NEW temporarily removes all local variables, including descendant variables.

					When an argument is specified, the local variables named in the argument are temporarily deleted						along with all descendants of those variables. In the second example, local variables A and SAVE are

					removed. The “exclusive NEW” is a special form of the NEW command where the argument of the						NEW command is a series of unsubscripted local variables (such as A and Save) contained in

					parentheses; all local variables are temporarily removed except those named and their descendants.}

			

Table of Commands (continued)

Command		Examples		Explanation

USE			U 4		USE designates a specific device (such as device number 4 or device MT+2) as the current device for				U MT+2:		input and output, or device staus. Device designators are implementation-specific. Before a device can

(devparms)	be named in the argument of a USE command, its ownership must have been established through execution of an OPEN command. As for CLOSE and OPEN, implementation-specific parameters may be placed after a device name.

VIEW			Implementation	VIEW provides an access point within Standard MUMPS for the examination or modification of

			specific		implementation-dependent information.

WRITE			W “HELLO”	WRITE specifies the output of data and format control to the current device. When an argument

			W A,B,Z		includes an asterisk followed by an integer value, one character whose ASCII code is the number

			W *13		represented by the integer is sent to the current device. The effect of this character at the device is

			W !?5,NAME	device-dependent and implementation-specific.

			W “AVG=”,SUM/TOT

XECUTE			X “S A=3”		XECUTE provides a means of interpreting a data value created during program execution as if it were

					MUMPS code. Each argument of the XECUTE command is interpreted as if it were a line of MUMPS

					code (without label or line start indicator).

	

Z implementation specific			Names of commands beginning with the letter Z are reserved for implementation-specific extensions

					of MUMPS.

Table of Commands (continued)

Command		Examples		Explanation

OPEN			O 4		The OPEN command is used to obtain exclusive ownership of a device. It does not affect the “current				O 7:(devparms)	device” with which the routine is interacting. Implementation-specific device parameters may be

device label is unique id		placed after a device name. Ownership is relinquished upon execution of the CLOSE command.

ownership=one at a time		“timeout” may be affixed to any argument to abort an unsuccessful attempt to OPEN that device, (so

					the job doesn’t wait indefinitely).

QUIT			Q		QUIT define an exit point following a FOR, a DO, or an XECUTE command, {or termination of an

			{Q RESULT}	extrinsic function. The QUIT command takes an argument only when terminating an extrinsic					{Q 37*1.2}	function, in which case the value of the argument will be the value of the extrinsic function.}

READ			R VALUE,X	READ calls for data input from the current device, and the assignment of the response to a named local

			R *A		variable. When the argument contains an asterisk preceding a variable name, a code representing a					R “NAME:”,N	single character is obtained. When the argument contains a “#” following the variable name, and the					R “WAIT?”,X:30	“#” is followed in turn by a numeric expression, this expression specifies the maximum number of

			R ROW#80	characters to be input. Any text and format control characters (see below) in the argument of the

					READ command are output on the current device. The amount of time for completion of input may be

					specified by affixing a timeout to an argument of READ.

SET (var=”value”)		S NEW =”BIG”	SET in the general means explicitly assigning values to variables. When a list of variable names in

			S X=”B”, partition	parentheses is placed between the SET command and the assignment symbol (“=”), each named

			 ^GO(1)=9 disk	variable is given the value following the assignment symbol. Note that the expression following the

			S (I,J,K)=1		assignment symbol is evaluated before the named variable(s), as in “SET ^(T)=^COUNT(T)+1”. Also

					note that “pieces” of a variable can be set (see $PIECE function). Also note that a variable must be							defined before its value can be referenced (e.g. S I=I+1 will return error:<undefined> variable).

Table of Functions (continued)

Function Name

and Syntax		Explanation					Examples		Results

$RANDOM(I1)		$RANDOM returns an integer in the range of 0 through I1	$R(2)		0 or 1 (if integer=0, runtime error)

			minus one. Each integer value has equal probability of		$R(100)		An integer between 0 and 99

$SELECT(T1:E1,		$SELECT evaluates the left-hand expression in each of a	$S(A=3:5, 1:0)	5 if A has the value of 3.

 T2:E2, . . .,Tn:En)		series of expression pairs, one at a time in left –to-right		$S(X=7:”HI”,	“BYE” if X has a value not equal to 7

			order, until one is found with na truth value of 1 (true), then	 1:”BYE”)

			returns the value of the right-hand expression of that pair.	$S(Z=1:1,Z<0:0, 1:2)		0 if X is negative.

			In each pair, the truth-valued expression (Tn) on the left is	$S(condition:value)	returns value of first true condition.

			separated from its “result” expression on the right (En)

			by a colon. There may be one or more pairs in the series,

			but at least one of the truth-valued expressions must be

			true. Note that $SELECT may replace short IF/ELSE statements.

$TEXT(L1)		$TEXT returns the text of a specified line of the current		$T(LINE)		Returns the text of the line labeled

$TEXT(L1+I2)		routine, including the line-start indicator and label. Lines			LINE, offset by itself.

$TEXT(+I1)		may be referenced by label (L1), by a positive offset from	$T(A+3)		Returns the text of the third line after

			a label (L1+I2), or by a positive offset from the beginning			the line labeled A.

			of the routine (+I1). If the specified line does not exist,		$T(+2)		returns the second line of the routine			the empty string is returned. {Text from another routine 		$T(+0)		returns the routine’s name.

			can be obtained by following the label (L1) or label plus	{$T(A+2^BEGIN)	returns the second line after the label

			offset (L1+I2) by the routine name.}					 A in the routine BEGIN.}	

